_ and audiovisual material for private use only. Download or further distributio_

Software Testing

Sibylle Schupp?!

Lnstitute for Software Systems/Institut fiir Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 6

d audiovisual material for private use only. Download or further distribut
Outline

0 Graph coverage 11

nd audiovisual material for private use only. Download or further distributi
Outline

@ Specifications: testing sequence constraints
@ Specifications: testing state behavior

° Graph coverage 11l @ Specifications: use cases

@ Design artifacts

_ and audiovisual material for private use only. Download or further distributio_

Graph coverage for design elements

@ The most common graph for structural design testing is the call graph.

A call graph of a program is a graph where nodes are methods and edges
represent calls.

o Structural testing

o Node coverage, edge coverage
o Others ...

o Data-flow testing
o Caller-callee

Slides and audiovisual material for private use only. Download or further distribution p_

Node and edge coverage

©

Node coverage: call every method at least once.

(7]

Edge coverage: execute every call at least once.

(+]

Problem: call graph often very flat

class Stack {

public void push (Object o)
public Object pop ()
public boolean isEmpty (Object o)

}

(7]

Other graphs?
o Inheritance graph? Not executable.
o Could require creation of an object. Weak criterion (still no execution).

Sibylle Schupp Software Testing - Lecture 6 —

and audiovisual material for private use only. Download or further distribution—

Call coverage

o The following criteria assume an inheritance graph and define coverage
criteria that require execution.

A TR has OO call coverage if it contains each reachable node in the call
graph of an object instantiated for each class in the class hierarchy.

A TR has OO object call coverage if it contains each reachable node in the
call graph of every object instantiated for each class in the class hierarchy.

o Possibly many objects.

o Not really used in practice.

_es and audiovisual material for private use only. Download or further distribution —
Data-flow testing

At design level, data-flow testing is more interesting.
o Data-flow coupling more complex:

o Different names for actual and formal parameter
o Sharing

Notation:

The method (or unit) that invokes another method (or unit) is called the
caller; the invoked method is called the callee. The statement or node that
makes that call is called the call site.

o Parameters at the caller’s site are called formal parameters; parameters
(variables) at the callee's site are called actual parameters.

o def-use pairs are represented as pairs of triples (method, var,
statement).

and audiovisual material for private use only. Download or further distribution—

Example (call site)

A // caller

Z: B(X) // call site, actual parameter X
end A
B(Y) // callee, formal parameter Y
end B

o Considering all def-use pairs between units is too expensive
o Instead: focus on the interface

_es and audiovisual material for private use only. Download or further distribution—

Interprocedural DU pairs

A node is a last-def node if it defines a variable x and has a def-clear path
from that node through a call site to a use of x.

o Both directions: from caller to callee, from callee to caller

A node n is a first-use node for a variable x if it uses x and has a def-clear
path and use-clear path from the call site to that node (if n in caller) or
from the callee’s entry to that node (if n in callee).

o A path from n; to n; is use-clear for a variable x if x & use(ny) for
every node ng, k # i,j on that path.

o The variable x can obtain its value through parameter passing, return
statements, or shared data.

and audiovisual material for private use only. Download or further distribution—
Example (interprocedural DU pairs)

Caller F

x = 14 // last—def, 1
y: G(x) // call site
print(y) // first —use, 2
Callee G(a)

print(a) // first—use, 1
b: 42 // last—def, 2
|.'4-a£urn b

Two interprocedural pairs
o (F, x, x=14) - (G, a, print a)
o (G, b, b=42) - (F, y, print y)

Slides and audiovisual material for private use only. Download or further distribution pro_

Example: interprocedural DU pairs

o Last-defs for x: 2,3; for (Z,T): 11,12
o First-uses for y: 11,12
o DU pairs

o (Ax.2) - (By11), (Ax,2) - (B,y,12),
(Ax,3) - (B,y,11), (Ax,3) - (B,y,12)

Sibylle Schupp Software Testing - Lecture 6 _

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Another example: interprocedural DU pairs

1// Program to compute the quadratic root for
two numbers

2 import java.lang.Math;

3

4 class Quadratic

5{

6 private static float Rootl, Root2;
;i

8 imb]ic static void main (String[] argy)
9

mntmllﬂag Integer.parselnt(argv[0]);
;f (controlFlag —1)

X = Integer.parselnt (argy[1]);

Y = Integer.parselnt (argv[2]);

Z = Integer.parselnt (argv[3]);

Introduction 1o Software Testing, edition 2 (Ch7)

Sibylle Schupp

(“Quadratic: ” + Root1 + Root2);
System,ont.println (“No Solution.”);

3
33 // Three positive integers, finds quadratic root
34 private static hoolean Root (int A, int B, int C)

double D;

hoolean Result

D= (douhle) (B*B) (double) (4.0*A*C);
if (D <0.0)

{
Result = false;
return (Result);

}

Rootl = (double) ((-B + Math.sart(D))/
(2.0*A));
45 Root2 = (double) ((-B — Math.sart(D))/(2.0*A));
46 Result = true;
47 return (Result);
48 } // End method Root
49 } // End class Quadratic

Software Testing - Lecture 6

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Another example (cont’d)

1// Program to compute the quadratic root for two numbers
2 import java.lang.Math;
k]

4 class Quadratic

S{
6 private static floaf Root1, Root2;] shared
i

8 public static void main (String[] argv) variables
9{

1
12 mLmtmLEJag Integer.parselnt (argy [0]);
13 if (controlFlag —1)

14
Integer.parselnt (argy. [1]);
Integer.parselnt (argv [2]);
Integer.parselnt (argy. [3]);

Introduction 1o Software Testing, edition 2 (Ch 7)

Sibylle Schupp Software Testing - Lecture 6

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Another example: (cont'd)

33 // Three positive integers, finds the quadratic root
34 private static boolean Root (int A, int B, int.C)

D = (double)
) <ot:o)e @

{
false;

return (Result);

48 }//End method Root
49 } // End class Quadratic

Introduction to Software Testing, edition 2 (Ch7)

Sibylle Schupp Software Testing - Lecture 6

_nd audiovisual material for private use only. Download or further distributi—
Another example: (cont'd), DU pairs

_es and audiovisual material for private use only. Download or further distribution —
Discussion

o We considered only variables that are used or defined in the caller.
o Class and global variables are assumed to be initialized.
o No transitivity (too expensive)
o Arrays are considered to be one element.
o Two kinds of def-use pairs
o intra-procedural
o inter-procedural

_ Software Testing - Lecture 6

and audiovisual material for private use only. Download or further distribution—
Refinements

@ The notion of DU pairs could be further refined.

o OO DU pairs: require def and use to be executed from the same object
begin F

begin A
.. // def
end A

begin B
.. // use
end B

end F

Software Testing - Lecture 6

Slides and audiovisual material for private use only. Download or further distribution pro_
Refinements (2)

o Web applications, distributed software

distributed software data flow

where messages could be HTTP, RMI, ... protocols
o May consider those def/use points as advanced kinds of DU pairs.

o ldentifying def-clear paths and test paths not trivial.

Sibylle Schupp Software Testing - Lecture 6 _

Slides and audiovisual material for private use only. Download or further distribution pr_

Interprocedural data-flow coverage criteria

o A coupling du path for a variable x is a path from a last-def of x to a
first-use of x.

o Coverage criteria
o All-Coupling-Defs coverage: for every last-def, at least one path to a
first-use is executed.
o All-Coupling-Use coverage: for every last-def, at least one path to every
first-use is executed.
o All-Coupling-DU-Path coverage: for every last-def, every path to a
first-use is executed.

o As before, All-Coupling-DU-Path coverage may be satisfied by paths
with sidetrips.

Sibylle Schupp Software Testing - Lecture 6 —

nd audiovisual material for private use only. Download or further distributi
Outline

@ Specifications: testing sequence constraints
@ Specifications: testing state behavior

° Graph coverage 11l @ Specifications: use cases

@ Design artifacts

_des and audiovisual material for private use only. Download or further distribution _

Graph coverage for specifications

o A specification (formally) defines the expected functional and
non-functional requirements.

o Sometimes called model.
o Abstraction from the implementation

o We look into two forms of behavioral specification:

o Sequencing constraints on class methods
o Descriptions of states and state transitions

and audiovisual material for private use only. Download or further distribution—

Sequencing constraints

Sequencing constraints are rules that determine in which order methods

may be called.

o Constraints are tested by sequences of method calls.
o Encoding of constraints?
o Explicit, e.g., in pre-conditions
o Implicit, e.g., in pre-conditions
o Not at all. Then the tester needs to derive them (documentation,
implementation, ask developers)

_des and audiovisual material for private use only. Download or further distribution _

Example (sequencing constraints)

public int deQueue()

// Pre: At least one element must be on the queue.

public enQueue (int e)

// Post: e is on the end of the queue.

o Here, the sequence constraint is implicitly encoded (comment)
o enQueue must be called before deQueue.

o Left unspecified: must have at least as many enQueues as deQueues.
o Could be handled by state behavior techniques (see below).

Slides and audiovisual material for private use only. Download or further distribution p_
Example (sequencing constraints): ADT File

class FileADT
{

open (String fName) // Opens file with name fName

close () // Closes the file and makes it unavailable

write (String textlLine) // Writes a line of text to the file
}

Sequencing constraints
o An open must be executed before every write.
o An open must be executed before every close.

o A write may not be executed after a close unless there is an open
between.

o A write should be executed before every close.

Sibylle Schupp Software Testing - Lecture 6 —

Slides and audiovisual material for private use only. Download or further distribution pro_

Checking the constraints
Assume the following client application:

Client that uses FileADT

CE) open (f)

©

Is there a path to a write that does not go
through an open?

(7]

Is there a path to a close that does not go
through an open?

©

Is there a path from a close to a write?

©

Is there a path from an open to a close that
does not go through a write?

o Violation detectable in path [1,3,4,6]

Sibylle Schupp Software Testing - Lecture 6 _

Slides and audiovisual material for private use only. Download or further distribution pro_

Another example (checking the constraints)

Assume the following client application:

()

close () o

o Violation: [7,3,4]

o Close before write

Sibylle Schupp Software Testing - Lecture 6 _

Slides and audiovisual material for private use only. Download or further distribution pro_

Defining test requirements

Client that uses FileADT

(é:)OPen(ﬁ

/N

write(§2) 3)
D)

(a) (s

o Violation in path [1,3,4,6]
o Try to execute this path.

o What if the program does not allow taking th
path?
o Recall: the question is undecidable

Sibylle Schupp Software Testing - Lecture 6 _

Slides and audiovisual material for private use only. Download or further distribution pro_
Test requirements for FileADT

o Formulate test requirements that aim at violating sequence constraints:

o Cover every path from the start node to every node that contains a write
such that the path does not go through a node containing an open.

o Cover every path from the start node to every node that contains a close
such that the path does not go through a node containing an open.

o Cover every path from every node that contains a close to every node
that contains a write.

o Cover every path from every node that contains an open to every node
that contains a close such that the path does not go through a node
containing a write.

o In a correct program all test requirements are infeasible.

Sibylle Schupp Software Testing - Lecture 6 _

nd audiovisual material for private use only. Download or further distributi
Outline

@ Specifications: testing sequence constraints
@ Specifications: testing state behavior

° Graph coverage 11l @ Specifications: use cases

@ Design artifacts

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Example (finite state machine)

Finite State Machine—Two Variables

circulation = yes)
dspeed = 39..73 mph

Other variables may exist but not be part of state

o FSM specification of a weather system with 5 states
o Note: missing transition from state “"Something Else";

dangling transition from “Major Hurricane”
o Variables “circulation” and “windspeed” define the different states and

their transitions

Sibylle Schupp Software Testing - Lecture 6 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Example Annotations

open elevator

\ |pre: elevSpeed
\ 0
trigger: openButton = pressed

o A FSM with two states

o Variables “elevSpeed” and “openButton” associated

Sibylle Schupp Software Testing - Lecture 6 2022

31

Slides and audiovisual material for private use only. Download or further distribution pr_

Testing state behavior

o A finite state machine (FSM) can be used to model how variables
change their state during program execution.

o Nodes represent states.
A state captures, at a given point, the values of program variables.
o Edges represent transitions from one state to a changed state.
o Applications:
o Embedded software, protocols (network, web)
o Compilers (parser)
o Abstract data types, classes
o Modeling languages exist with different characteristics.

o Graphical: UML state charts, Petri Net
o Formal: Automata

Sibylle Schupp Software Testing - Lecture 6 —

Slides and audiovisual material for private use only. Download or further distribution p_
Annotations on FSMs

o FSMs can be annotated with actions.

o Entry actions to a node, exit action from a node
o Actions on edges

o FSMs can also be annotated with predicates and conditions

o Preconditions (guards): boolean conditions that must be true if a
transitions can be taken
o Triggering events: changes to variables that cause transitions to be taken

Sibylle Schupp Software Testing - Lecture 6 —

Slides and audiovisual material for private use only. Download or further distribution pr_
Interpreting coverage of FSMs

o Structural criteria

o Node coverage: execute every state
o Edge coverage: execute every transition
o Edge-pair coverage: execute every transitions pair
o Data-flow criteria in practice
o Annotations needed (def/use)
o Triggers contain def information, but DU path is short (next state)
o Guards and actions may contain use and def information
o Nodes may also contain use and def information

@ Once an FSM is in place, graph-based testing is straightforward.

Sibylle Schupp Software Testing - Lecture 6 —

nd audiovisual material for private use only. Download or further distributi
Outline

@ Specifications: testing sequence constraints
@ Specifications: testing state behavior

° Graph coverage 11l @ Specifications: use cases

@ Design artifacts

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Requirements elicitation

Simple Use Case Example

ATM
User

@Actors : Humans or software components that use the
software being modeled

se cases : Shown as circles or ovals
EINode Coverage : Try each use case once ...

Use case graphs, by themselves, are not useful
ol testing

Transfer
Funds

Sibylle Schupp Software Testing - Lecture 6 2022

36

Slides and audiovisual material for private use only. Download or further distribution pr_

Use cases

o Uses cases are widely used to capture software requirements.

o Graph-based testing

o Use-case diagrams can be considered graphs, but then the only
applicable coverage criterion is node coverage.

o But use cases also have a richer textual description (preconditions,
postconditions, steps alternative flows).

o For testing purposes, better to derive a graph from the textual
description. Sometimes, such graph is already available as "activity
diagram.”

Sibylle Schupp Software Testing - Lecture 6 —

and audiovisual material for private use only. Download or further distributi

Textual description
Source: K. Saleh, Software Engineering, Ross 2009.

Table 3.5 Place Order use case

Identification uc x

Name Place Order

Created by J. Smith, January 5, 2008

Date created

Updated by

Date of update

Actors involved Triggering actor: Buyer
Secondary (affected) actors: Finance and warehouse

Brief description This use case is started by the buyer to construct electronic basket with books selected from
the catalogue

Assumptions Catalogue includes available books

Preconditions Buyer could be a registered or unregistered individual user

Buyer could be a registered institutional user
Registered buyer has already logged on successfully

Posteonditions Electronic basket is created and closed prior to placing the order
Priority High

Frequency of use High (one hundred orders per day during the first year)

Flow of events (or 1. Browse book catalogue

steps) 2. Select books

2.1. Select a book and quantity

2.2. Confirm availability

2.3, Compute current total cost

2.4. Repeat 2.1 through 2.3 until desired books are purchased
. Confirm order
4. Provide payment information and get confirmation of payment

w

_es and audiovisual material for private use only. Download or further distribution —

ATM Withdraw Activity Graph

Insert ATM Card |~ o 5 Prompt for PIN Enter PIN o

=D O Gl
Prompt for Transaction Check PIN o

o G o O O O

Eject Card
Print Welcome .
O Print Receipt Dispense Cash

nd audiovisual material for private use only. Download or further distributi

References

o AO, Ch. 7.4, 7.5. (7.6)

	Graph coverage III
	Design artifacts
	Specifications: testing sequence constraints
	Specifications: testing state behavior
	Specifications: use cases

