
Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Software Testing

Sibylle Schupp1

1Institute for Software Systems/Institut für Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 6

Sibylle Schupp Software Testing - Lecture 6 2022 1

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage III

Sibylle Schupp Software Testing - Lecture 6 2022 2

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage III
Design artifacts

Specifications: testing sequence constraints
Specifications: testing state behavior
Specifications: use cases

Sibylle Schupp Software Testing - Lecture 6 2022 3

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Graph coverage for design elements

The most common graph for structural design testing is the call graph.

Definition
A call graph of a program is a graph where nodes are methods and edges
represent calls.

Structural testing
Node coverage, edge coverage
Others . . .

Data-flow testing
Caller-callee

Sibylle Schupp Software Testing - Lecture 6 2022 4

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Node and edge coverage

Node coverage: call every method at least once.
Edge coverage: execute every call at least once.
Problem: call graph often very flat

c l a s s Stack {
// . . .
p u b l i c vo id push (Object o)
p u b l i c Object pop ()
p u b l i c boo lean i sEmpty (Object o)

}

Other graphs?
Inheritance graph? Not executable.
Could require creation of an object. Weak criterion (still no execution).

Sibylle Schupp Software Testing - Lecture 6 2022 5

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Call coverage

The following criteria assume an inheritance graph and define coverage
criteria that require execution.

Definition
A TR has OO call coverage if it contains each reachable node in the call
graph of an object instantiated for each class in the class hierarchy.

Definition
A TR has OO object call coverage if it contains each reachable node in the
call graph of every object instantiated for each class in the class hierarchy.

Possibly many objects.
Not really used in practice.

Sibylle Schupp Software Testing - Lecture 6 2022 6

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Data-flow testing
At design level, data-flow testing is more interesting.

Data-flow coupling more complex:
Different names for actual and formal parameter
Sharing

Notation:

Definition
The method (or unit) that invokes another method (or unit) is called the
caller; the invoked method is called the callee. The statement or node that
makes that call is called the call site.

Parameters at the caller’s site are called formal parameters; parameters
(variables) at the callee’s site are called actual parameters.

def-use pairs are represented as pairs of triples (method, var,
statement).

Sibylle Schupp Software Testing - Lecture 6 2022 7

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (call site)

A // c a l l e r
. . .
Z = B(X) // c a l l s i t e , a c t u a l paramete r X
. . .

end A

B(Y) // c a l l e e , f o r m a l paramete r Y
. . .

end B

Considering all def-use pairs between units is too expensive
Instead: focus on the interface

Sibylle Schupp Software Testing - Lecture 6 2022 8

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Interprocedural DU pairs

Definition
A node is a last-def node if it defines a variable x and has a def-clear path
from that node through a call site to a use of x .

Both directions: from caller to callee, from callee to caller

Definition
A node n is a first-use node for a variable x if it uses x and has a def-clear
path and use-clear path from the call site to that node (if n in caller) or
from the callee’s entry to that node (if n in callee).

A path from ni to nj is use-clear for a variable x if x ̸∈ use(nk) for
every node nk , k ̸= i , j on that path.
The variable x can obtain its value through parameter passing, return
statements, or shared data.

Sibylle Schupp Software Testing - Lecture 6 2022 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (interprocedural DU pairs)
Caller F
x = 14 // l a s t −def , 1
. . .
y = G(x) // c a l l s i t e

p r i n t (y) // f i r s t −use , 2

Callee G(a)
p r i n t (a) // f i r s t −use , 1
. . .
b = 42 // l a s t −def , 2
. . .
r e t u r n b

Two interprocedural pairs
(F, x, x=14) - (G, a, print a)
(G, b, b=42) - (F, y, print y)

Sibylle Schupp Software Testing - Lecture 6 2022 10

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example: interprocedural DU pairs

Last-defs for x: 2,3; for (Z,T): 11,12
First-uses for y: 11,12
DU pairs

(A,x,2) - (B,y,11), (A,x,2) - (B,y,12),
(A,x,3) - (B,y,11), (A,x,3) - (B,y,12)

Sibylle Schupp Software Testing - Lecture 6 2022 11

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example: interprocedural DU pairs

Sibylle Schupp Software Testing - Lecture 6 2022 12

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example (cont’d)

Sibylle Schupp Software Testing - Lecture 6 2022 13

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example: (cont’d)

Sibylle Schupp Software Testing - Lecture 6 2022 14

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example: (cont’d), DU pairs

Sibylle Schupp Software Testing - Lecture 6 2022 15

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Discussion

We considered only variables that are used or defined in the caller.
Class and global variables are assumed to be initialized.
No transitivity (too expensive)
Arrays are considered to be one element.

Two kinds of def-use pairs
intra-procedural
inter-procedural

Sibylle Schupp Software Testing - Lecture 6 2022 16

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Refinements

The notion of DU pairs could be further refined.
OO DU pairs: require def and use to be executed from the same object
beg in F
. . .

b eg in A
. . // d e f
end A

beg in B
. . // use
end B

end F

Sibylle Schupp Software Testing - Lecture 6 2022 17

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Refinements (2)

Web applications, distributed software

where messages could be HTTP, RMI, . . . protocols
May consider those def/use points as advanced kinds of DU pairs.
Identifying def-clear paths and test paths not trivial.

Sibylle Schupp Software Testing - Lecture 6 2022 18

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Interprocedural data-flow coverage criteria

A coupling du path for a variable x is a path from a last-def of x to a
first-use of x .
Coverage criteria

All-Coupling-Defs coverage: for every last-def, at least one path to a
first-use is executed.
All-Coupling-Use coverage: for every last-def, at least one path to every
first-use is executed.
All-Coupling-DU-Path coverage: for every last-def, every path to a
first-use is executed.

As before, All-Coupling-DU-Path coverage may be satisfied by paths
with sidetrips.

Sibylle Schupp Software Testing - Lecture 6 2022 19

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage III
Design artifacts

Specifications: testing sequence constraints
Specifications: testing state behavior
Specifications: use cases

Sibylle Schupp Software Testing - Lecture 6 2022 20

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Graph coverage for specifications

A specification (formally) defines the expected functional and
non-functional requirements.

Sometimes called model.
Abstraction from the implementation

We look into two forms of behavioral specification:
Sequencing constraints on class methods
Descriptions of states and state transitions

Sibylle Schupp Software Testing - Lecture 6 2022 21

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Sequencing constraints

Definition
Sequencing constraints are rules that determine in which order methods
may be called.

Constraints are tested by sequences of method calls.
Encoding of constraints?

Explicit, e.g., in pre-conditions
Implicit, e.g., in pre-conditions
Not at all. Then the tester needs to derive them (documentation,
implementation, ask developers)

Sibylle Schupp Software Testing - Lecture 6 2022 22

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (sequencing constraints)

p u b l i c i n t deQueue ()
{

// Pre : At l e a s t one e l ement must be on the queue .
. .

}
p u b l i c enQueue (i n t e)
{

// Post : e i s on the end o f the queue .
. . .

}

Here, the sequence constraint is implicitly encoded (comment)
enQueue must be called before deQueue.

Left unspecified: must have at least as many enQueues as deQueues.
Could be handled by state behavior techniques (see below).

Sibylle Schupp Software Testing - Lecture 6 2022 23

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (sequencing constraints): ADT File

c l a s s FileADT
{

open (S t r i n g fName) // Opens f i l e w i th name fName
c l o s e () // C l o s e s the f i l e and makes i t u n a v a i l a b l e
w r i t e (S t r i n g t e x t L i n e) // Wr i t e s a l i n e o f t e x t to the f i l e

}

Sequencing constraints
An open must be executed before every write.
An open must be executed before every close.
A write may not be executed after a close unless there is an open
between.
A write should be executed before every close.

Sibylle Schupp Software Testing - Lecture 6 2022 24

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Checking the constraints
Assume the following client application:

Is there a path to a write that does not go
through an open?
Is there a path to a close that does not go
through an open?
Is there a path from a close to a write?
Is there a path from an open to a close that
does not go through a write?
Violation detectable in path [1,3,4,6]

Sibylle Schupp Software Testing - Lecture 6 2022 25

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example (checking the constraints)

Assume the following client application:

Violation: [7,3,4]
Close before write

Sibylle Schupp Software Testing - Lecture 6 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Defining test requirements

Violation in path [1,3,4,6]
Try to execute this path.
What if the program does not allow taking this
path?

Recall: the question is undecidable

Sibylle Schupp Software Testing - Lecture 6 2022 27

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Test requirements for FileADT

Formulate test requirements that aim at violating sequence constraints:

Cover every path from the start node to every node that contains a write
such that the path does not go through a node containing an open.
Cover every path from the start node to every node that contains a close
such that the path does not go through a node containing an open.
Cover every path from every node that contains a close to every node
that contains a write.
Cover every path from every node that contains an open to every node
that contains a close such that the path does not go through a node
containing a write.

In a correct program all test requirements are infeasible.

Sibylle Schupp Software Testing - Lecture 6 2022 28

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage III
Design artifacts

Specifications: testing sequence constraints
Specifications: testing state behavior
Specifications: use cases

Sibylle Schupp Software Testing - Lecture 6 2022 29

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (finite state machine)

FSM specification of a weather system with 5 states
Note: missing transition from state “Something Else”;
dangling transition from “Major Hurricane”
Variables “circulation” and “windspeed” define the different states and
their transitions

Sibylle Schupp Software Testing - Lecture 6 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

A FSM with two states
Variables “elevSpeed” and “openButton” associated

Sibylle Schupp Software Testing - Lecture 6 2022 31

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Testing state behavior

A finite state machine (FSM) can be used to model how variables
change their state during program execution.

Nodes represent states.
A state captures, at a given point, the values of program variables.
Edges represent transitions from one state to a changed state.

Applications:
Embedded software, protocols (network, web)
Compilers (parser)
Abstract data types, classes

Modeling languages exist with different characteristics.
Graphical: UML state charts, Petri Net
Formal: Automata

Sibylle Schupp Software Testing - Lecture 6 2022 32

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Annotations on FSMs

FSMs can be annotated with actions.
Entry actions to a node, exit action from a node
Actions on edges

FSMs can also be annotated with predicates and conditions
Preconditions (guards): boolean conditions that must be true if a
transitions can be taken
Triggering events: changes to variables that cause transitions to be taken

Sibylle Schupp Software Testing - Lecture 6 2022 33

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Interpreting coverage of FSMs

Structural criteria
Node coverage: execute every state
Edge coverage: execute every transition
Edge-pair coverage: execute every transitions pair

Data-flow criteria in practice
Annotations needed (def/use)
Triggers contain def information, but DU path is short (next state)
Guards and actions may contain use and def information
Nodes may also contain use and def information

Once an FSM is in place, graph-based testing is straightforward.

Sibylle Schupp Software Testing - Lecture 6 2022 34

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage III
Design artifacts

Specifications: testing sequence constraints
Specifications: testing state behavior
Specifications: use cases

Sibylle Schupp Software Testing - Lecture 6 2022 35

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Requirements elicitation

Sibylle Schupp Software Testing - Lecture 6 2022 36

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Use cases

Uses cases are widely used to capture software requirements.
Graph-based testing

Use-case diagrams can be considered graphs, but then the only
applicable coverage criterion is node coverage.
But use cases also have a richer textual description (preconditions,
postconditions, steps alternative flows).
For testing purposes, better to derive a graph from the textual
description. Sometimes, such graph is already available as “activity
diagram.”

Sibylle Schupp Software Testing - Lecture 6 2022 37

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Textual description
Source: K. Saleh, Software Engineering, Ross 2009.

Sibylle Schupp Software Testing - Lecture 6 2022 38

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Sibylle Schupp Software Testing - Lecture 6 2022 39

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

References

AO, Ch. 7.4, 7.5. (7.6)

Sibylle Schupp Software Testing - Lecture 6 2022 40

	Graph coverage III
	Design artifacts
	Specifications: testing sequence constraints
	Specifications: testing state behavior
	Specifications: use cases

