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Introduction

o RIPR model: reachability, infection, propagation, revealability

o Graph coverage: reachability
o Logic coverage: infection
o (Input space partitioning: independent of RIPR model)

o Model-based testing so far:

o Input domain model
o Graph model
o Logic model

o Syntax-based testing

o Propagation
o Syntax as model
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Syntax coverage

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt
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Using the syntax for testing

o Many artifacts follow syntax rules:
o Programs, input descriptions, design documents, ...
o The rules are often expressed as grammar.

o Common grammars: regular grammars, context-free grammars
o Theoretical foundation: automata theory

o Possible test goals

o Cover the syntax in some way
o Violate the syntax
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Regular expressions

Let > be an alphabet and denote by € the empty string. The set of
regular expressions is defined inductively.

@ € and every a € X is a regular expression.

@ If r,s are regular expressions, then their concatenation, choice, and
repetition is a regular expression.

@ Every regular expression is obtained from the previous two rules.

example (X ={0,1,2,3,4,r,s,x})
Operators choice r+s
sequence  rs
repetition r*
Additional op. (range) [0—3]
fixed rep. x"
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Example (regular expression)

o Example: X = {G, B, n,s, t}, (Gsn|Btn)*
o Interpretation: G, B methods, commands, events;
n,s,t parameters or values
o Each regular expression defines a set of strings. A string that is
element of that set is said to be in the grammar (or in the language).
o Gsn, Btn, BtnGsn, BtnBtn, . ..
o A test case is a string that satisfies the regular expression.
o Example: X ={G,B,0,...9,a,...z},
regular expression: (G[0 — 9]*[a — z]* | B[0 — 9]*[a — z]*)*
o G99a, Blabc, GOaBlb, ...

Sibylle Schupp Software Testing - Lecture 11 —
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BNF grammars: example

Backus-Naur form

Stream := action*

action = actG | actB

actG = "“G"sn

actB = "B"tn

s = digit!3

t = digit! 3

n = digit® " digit® “" digit?

digit e I T S B B e B S B R Y A B A B R B
Notation

o A grammar consists of a set of productions. A production is a pair (lhs,
rhs), where rhs rewrites lhs. Productions with the same lhs can be
combined via | and .

o Terminal symbols are enclosed in quotes, all other symbols are called
non-terminals. The first symbol (Stream) is the start symbol.

Sibylle Schupp Software Testing - Lecture 11 —
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Using grammars

In grammar-based testing, tests are strings. A string of terminals obtained

by applying a sequence of derivations is said to be in the grammar (or in
the language).

A ground string is a string in the grammar.

o Recognition

o Is a test (string) in a grammar?
o Parsing problem
o Useful for input validation

o Ex.: G2508.01.90 is in the grammar

o Proof by derivation: start with the start symbol, apply production rules
to obtain a tree the leaves of which, concatenated, form that string.

o Generation: given a grammar, derive tests (strings) from it.
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Classification

Grammar-based
Testing

UnMutated Derivations Mutated Derivations
(valid strings) (invalid strings)

Grammar Mutation | | Ground String
e (invalid strings) Mutation

define generic
coverage criteria

Invalid Strings | | Valid Strings

Introduction to Software Testing, edition 2 (Ch 9)
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Terminal symbol coverage and production coverage

o For terminal symbol coverage (TSC), TR contains each terminal
symbol in the grammar.

o For production coverage (PDC), TR contains each production in the
grammar.

Discussion
o PDC subsumes TSC.

o Grammars can be considered graphs (PDC equivalent to edge
coverage.)

o Other grammar coverage criteria?
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Derivation coverage

For derivation coverage (DC), TR contains every possible string that can

be derived from the grammar.

Discussion
o Infeasible

o Compare the size of the test set for the Stream grammar

o TSC: 13 symbols, thus max. 13 tests

o PDS: 18 productions, thus max. 18 tests

o DC: consider just the number of subtrees of node “action”:
2 - 10° derivations = subtrees = strings possible!

o Other criteria? What about tests that are not in the grammar?
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Mutation testing: idea

o Grammars describe both valid and (implicitly) invalid strings.
o Both types can be produced by mutating a valid string.

o Mutating valid strings can result in valid as well as invalid strings.
o Mutation testing

o Proceed systematically, using well-defined rules
o A.k.a. mutation analysis
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Mutants and mutation operators

Recall that a ground string is a string in the grammar.

A mutation operator is a rule for generating syntactic variations of ground

strings. A mutant is the result of the application of a mutation operator.

Example:
o Ground string G2508.01.90

o Valid mutant B2508.01.90
o Invalid mutant F2508.01.90
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Practical issues

o Should more than one mutation operator be applied to the same
string?

o Usually not (interference), but higher-order mutants exist

o Should every possible application of an operator be considered?
o Typically yes for program-based mutations

o For which languages can mutation operators be defined?

Programming languages (Fortran, ..., Java)

Specification languages (NuSMV. ...)

Modeling languages (UML statecharts, activity diagrams)

Input grammars (XML, ...)

© 06 0 o

Sibylle Schupp
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Killing mutants

Given a mutant m for a derivation D. A test t is said to kill m iff the
output of t on D is different from the output of t on m.

Discussion

o Does the mutated ground string yield a string that exhibits different
behavior?

o "Output of t” will be interpreted in different ways.
o Ex: D, m programs. Then, the output of the two programs is compared.

@ D can be represented as list of productions or as the final string.
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Mutation coverage (MC): valid strings

Let M be a set of mutants. Given a mutant m € M. For mutation coverage

(MC) TR contains one requirement per m, namely to kill m. The amount of
mutants killed is called the mutation score.

o For valid strings, the testing goal is to kill a mutant: coverage ~ killing

o Ex.: consider ground string G2509.01.90 and its mutant 82509.01.90
(valid). Assume both strings represent subroutines. A killing test finds
parameters that result in different return values.
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Mutation coverage: invalid strings

o For mutation operator coverage (MOC), TR contains for each
mutation operator exactly one requirement, to create a mutated string
m that is derived using that operator.

o For mutation production coverage (MPC), TR contains for each
mutation operator and each production that operator can be applied to
the requirement to create a mutated string m from that production.

o If mutation results in invalid strings, the testing goal is simply to run
mutants.

o In this case, mutation operators define test requirements directly.
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Example (mutation coverage)

Consider the Stream grammar from before.
o We introduce three (non-standard) mutation operators:
o 1: Change G to B; 2: change B to G; 3: replace digit by another digit
o Now consider the two ground strings G2509.01.90 and B52106.27.94

o Applying the mutation operators each on the two ground strings yields,
e.g., B2509.01.90, G2106.27.94, G2309.01.90, B1106.27.94 (all valid).
o TR: find test cases that kill the four mutants

@ Now assume the following 2 mutation operators: change “G" to “F",
change “B"” to “C"
o TR for MOC: apply the mutation operators to the ground strings above
o Tests (for MOC coverage): F2509.01.90 and €2106.27.94 (all invalid)

Sibylle Schupp Software Testing - Lecture 11 _
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In-class exercise
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Mutation testing as gold standard

o Gold standard for comparing other test methods (see below for more)

o More effective, more expensive
o Number of tests depends on

o Size of the syntactic description
o Number of mutation operators

o Also applicable if there is no oracle available!
o Automation
o Hard (and expensive) to apply by hand
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Classification (grammar-based testing)

« Madel checking SR

*Valid strings

= Mutants are not tests
= Must kill mutants

testing
= XML and ethers
* lnvalid strings
* Ne ground strings

= Test how classes interact

=Valid strings

= Mutants are not tests.

» Must kil mutants * Input validation testing

* Includes OO * XML and cthers
=Valld strings

PrOduion i Botware Testing. aion 7 [Thi
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Overview (valid and invalid tests)

Program-based Model-based Input space
9.21 9.4.1 9.5.1

Algebraic Input languages,
specifications including XML

Input space testing

9.5.2

Input languages,
including XML

Yes Yes [No |
Yes, must compile | Yes, must compile | Yes ]
Yes Yes No
Includes OO Somatimes the
grammar is mutated

Voo I8 Sokwars Taling. s8on 2
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Program-based grammars

o Syntax-based testing originates in program testing.
o Mutation testing

o Commonly used for unit testing and integration testing
o BNF-based testing

o Used for testing language-based tools, e.g., compilers
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Overview (program-based grammars)

= Mutants are not tests
= Must kill mutants

Compiler testing
Walid and invalid stri

* Input validation testing
= XML and others
=Valld string:

£ Amran & O
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Program-based grammars: mutations

o Ground string: the program under test
o Mutation operators modify the ground string, create mutant programs.

o Mutants must compile (valid strings).
o Mutants are not tests (test requirements), but are used to define TRs.

o Tests must “make a difference.” We refine the previous definition:

Given a mutant m for a ground string program P. A test t is said to kill m
iff the output of t on P is different from the output of t on m.

o Different mutation operators are defined for different programming
languages and different testing goals.
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Classes of mutants

From a testing purpose, not all mutants are desirable. One distinguishes:
o Dead mutant
o Killed by a test case
o Stillborn mutant
o Syntactically illegal
o Trivial mutant
o Killable by almost any test case
o Equivalent mutant
o Impossible to kill by any test (same behavior as original)
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Example (program-based mutation)

int Min (int A, int B)
{

int minVal;

minVal = A;

if (B<A) {

minVal = B;

}

return (minVal);
} // end Min

o What are reasonable mutations?
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Example (mutants)

int Min (int A, int B)
{
int minVal;
// minVal = A; // original
minVal = B; // replace variable by another variable
// if (B < A) // original
if (B> A) // replace operator
if (B < minVal) // replace variable by another variable
{
minVal = B;
Bomb () ; // insert immediate runtime failure
minVal = A; // replace variable by another variable
minVal = failOnZero(B) // insert runtime failure
} // if B==0
return (minVal);
} // end Min

@ 6 mutants, each represents a separate program (6 diff. programs)

o “runtime failure”: only if program point reached

Sibylle Schupp
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Strong and weak killing

Let M be a set of mutants.

o Given a mutant m € M that modifies a location / in a program P. A
test t is said to strongly kill m iff the output of t on P is different from
the output of t on m.

o Given a mutant m € M that modifies a location / in a program P. A
test t is said to weakly kill m iff the state of the execution of P on t is
different from the state of the execution of m on t immediately after /.

o RIP: Weakly killing satisfies reachability and infection, but not
propagation.
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Weak mutation

For weak mutation coverage (WMC), TR contains for each m € M exactly
one requirement, to weakly kill m.

o Easier in practice than strong mutation: less analysis

o In practice: most test sets that weakly kill all mutants also strongly kill
(many of) them. (Or so we hope.)
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Example (weak mutation)

int Min (int A, int B) // the first mutant
{

int minVal;

// minVal = A;

minVal = B; // (%) replace variable by another variable

if (B<A)

{

minVal = B;

}

return (minVal);
} // end Min

o A weakly killing test: A=5, B=3
o State after (*) infected (different value for minVal)
o Conditions for RIP

o Reachability: line 2 always reachable
Infection: A # B (minVal has different value),
Propagation —(B < A) and A # B (Infection), thus B > A.

o For B < A, weak kills of this mutant do not also kill strongly

Sibylle Schupp Software Testing - Lecture 11 —
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Example (equivalent mutant)

int Min (int A, int B) // third mutant
{

int minVal;

minVal = A;

// if (B<A) // original

if (B < minVal) // (%) replace variable by another variable

{

minVal = B;

}

return (minVal);
} // end Min

o The mutant is equivalent
o Argument: by substitution

o No infection: state after (*) not infected;
in (B < minVal) both values B, minVal unchanged
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Example (strong versus weak mutation)

boolean isEven (int X)

if (X< 0) {
// X =0—X;, // original
X = 0; // replace variable by constant

}
if (double) (X/2) = ((double X)/ 2.0)
return true;
else
return false;
} // end isEven

o Consider test X = -6.
o RIP conditions?

o Reachability: X <0
o Infection X # 0. Test weakly kills mutant.
o Propagation: test does not strongly kill mutant.

o Condition for strong killing?



and audiovisual material for private use only. Download or further distribution—

In-class exercise

public static int findVal(int[] numbers, int val) { // pre: val>0

int findVal = —1;
// for (int i=1; i<numbers.length; i++) { // original
for (int i=0; i<numbers.length; i++4) { // mutant
if (numbers[i] = val) {
findVal = i;

}

return (findVal);
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Work flow

Run Generate RunT
equivalence test cases onP

detector /

Define Run mutants:

threshold Automated * schema-based

steps

* weak
» selective

l

Eliminate
ineffective
TCs

Irirodisction i Softwans Testing, edifion 2 (Gh &)
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