_ and audiovisual material for private use only. Download or further distributio_

Software Testing

Sibylle Schupp?!

Lnstitute for Software Systems/Institut fiir Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 11

_nd audiovisual material for private use only. Download or further distributi—
Outline

0 Syntax-based testing |

_des and audiovisual material for private use only. Download or further distribution _

Introduction

o RIPR model: reachability, infection, propagation, revealability

o Graph coverage: reachability
o Logic coverage: infection
o (Input space partitioning: independent of RIPR model)

o Model-based testing so far:

o Input domain model
o Graph model
o Logic model

o Syntax-based testing

o Propagation
o Syntax as model

Slides and audiovisual material for private use only. Download or further distribution pr_

Syntax coverage

Introduction to Software Testing, Edition 2 (Ch 07) © Ammann & Offutt

Sibylle Schupp Software Testing - Lecture 11 —

nd audiovisual material for private use only. Download or further distributi
Outline

@ Grammars and mutation
@ Program-based coverage

0 Syntax-based testing |

_es and audiovisual material for private use only. Download or further distribution —
Using the syntax for testing

o Many artifacts follow syntax rules:
o Programs, input descriptions, design documents, ...
o The rules are often expressed as grammar.

o Common grammars: regular grammars, context-free grammars
o Theoretical foundation: automata theory

o Possible test goals

o Cover the syntax in some way
o Violate the syntax

_es and audiovisual material for private use only. Download or further distribution —

Regular expressions

Let > be an alphabet and denote by € the empty string. The set of
regular expressions is defined inductively.

@ € and every a € X is a regular expression.

@ If r,s are regular expressions, then their concatenation, choice, and
repetition is a regular expression.

@ Every regular expression is obtained from the previous two rules.

example (X ={0,1,2,3,4,r,s,x})
Operators choice r+s
sequence rs
repetition r*
Additional op. (range) [0—3]
fixed rep. x"

Slides and audiovisual material for private use only. Download or further distribution pr_

Example (regular expression)

o Example: X = {G, B, n,s, t}, (Gsn|Btn)*
o Interpretation: G, B methods, commands, events;
n,s,t parameters or values
o Each regular expression defines a set of strings. A string that is
element of that set is said to be in the grammar (or in the language).
o Gsn, Btn, BtnGsn, BtnBtn, . ..
o A test case is a string that satisfies the regular expression.
o Example: X ={G,B,0,...9,a,...z},
regular expression: (G[0 — 9]*[a — z]* | B[0 — 9]*[a — z]*)*
o G99a, Blabc, GOaBlb, ...

Sibylle Schupp Software Testing - Lecture 11 —

Slides and audiovisual material for private use only. Download or further distribution pr_

BNF grammars: example

Backus-Naur form

Stream := action*

action = actG | actB

actG = "“G"sn

actB = "B"tn

s = digit!3

t = digit! 3

n = digit® " digit® “" digit?

digit e I T S B B e B S B R Y A B A B R B
Notation

o A grammar consists of a set of productions. A production is a pair (lhs,
rhs), where rhs rewrites lhs. Productions with the same lhs can be
combined via | and .

o Terminal symbols are enclosed in quotes, all other symbols are called
non-terminals. The first symbol (Stream) is the start symbol.

Sibylle Schupp Software Testing - Lecture 11 —

_es and audiovisual material for private use only. Download or further distribution—
Using grammars

In grammar-based testing, tests are strings. A string of terminals obtained

by applying a sequence of derivations is said to be in the grammar (or in
the language).

A ground string is a string in the grammar.

o Recognition

o Is a test (string) in a grammar?
o Parsing problem
o Useful for input validation

o Ex.: G2508.01.90 is in the grammar

o Proof by derivation: start with the start symbol, apply production rules
to obtain a tree the leaves of which, concatenated, form that string.

o Generation: given a grammar, derive tests (strings) from it.

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Classification

Grammar-based
Testing

UnMutated Derivations Mutated Derivations
(valid strings) (invalid strings)

Grammar Mutation | | Ground String
e (invalid strings) Mutation

define generic
coverage criteria

Invalid Strings | | Valid Strings

Introduction to Software Testing, edition 2 (Ch 9)

Sibylle Schupp Software Testing - Lecture 11 2022 11

and audiovisual material for private use only. Download or further distribution—

Terminal symbol coverage and production coverage

o For terminal symbol coverage (TSC), TR contains each terminal
symbol in the grammar.

o For production coverage (PDC), TR contains each production in the
grammar.

Discussion
o PDC subsumes TSC.

o Grammars can be considered graphs (PDC equivalent to edge
coverage.)

o Other grammar coverage criteria?

and audiovisual material for private use only. Download or further distribution—

Derivation coverage

For derivation coverage (DC), TR contains every possible string that can

be derived from the grammar.

Discussion
o Infeasible

o Compare the size of the test set for the Stream grammar

o TSC: 13 symbols, thus max. 13 tests

o PDS: 18 productions, thus max. 18 tests

o DC: consider just the number of subtrees of node “action”:
2 - 10° derivations = subtrees = strings possible!

o Other criteria? What about tests that are not in the grammar?

_es and audiovisual material for private use only. Download or further distribution —
Mutation testing: idea

o Grammars describe both valid and (implicitly) invalid strings.
o Both types can be produced by mutating a valid string.

o Mutating valid strings can result in valid as well as invalid strings.
o Mutation testing

o Proceed systematically, using well-defined rules
o A.k.a. mutation analysis

and audiovisual material for private use only. Download or further distributio_

Mutants and mutation operators

Recall that a ground string is a string in the grammar.

A mutation operator is a rule for generating syntactic variations of ground

strings. A mutant is the result of the application of a mutation operator.

Example:
o Ground string G2508.01.90

o Valid mutant B2508.01.90
o Invalid mutant F2508.01.90

Slides and audiovisual material for private use only. Download or further distribution pr_
Practical issues

o Should more than one mutation operator be applied to the same
string?

o Usually not (interference), but higher-order mutants exist

o Should every possible application of an operator be considered?
o Typically yes for program-based mutations

o For which languages can mutation operators be defined?

Programming languages (Fortran, ..., Java)

Specification languages (NuSMV. ...)

Modeling languages (UML statecharts, activity diagrams)

Input grammars (XML, ...)

© 06 0 o

Sibylle Schupp

Software Testing - Lecture 11 —

and audiovisual material for private use only. Download or further distribution—

Killing mutants

Given a mutant m for a derivation D. A test t is said to kill m iff the
output of t on D is different from the output of t on m.

Discussion

o Does the mutated ground string yield a string that exhibits different
behavior?

o "Output of t” will be interpreted in different ways.
o Ex: D, m programs. Then, the output of the two programs is compared.

@ D can be represented as list of productions or as the final string.

_es and audiovisual material for private use only. Download or further distribution —
Mutation coverage (MC): valid strings

Let M be a set of mutants. Given a mutant m € M. For mutation coverage

(MC) TR contains one requirement per m, namely to kill m. The amount of
mutants killed is called the mutation score.

o For valid strings, the testing goal is to kill a mutant: coverage ~ killing

o Ex.: consider ground string G2509.01.90 and its mutant 82509.01.90
(valid). Assume both strings represent subroutines. A killing test finds
parameters that result in different return values.

_des and audiovisual material for private use only. Download or further distribution _

Mutation coverage: invalid strings

o For mutation operator coverage (MOC), TR contains for each
mutation operator exactly one requirement, to create a mutated string
m that is derived using that operator.

o For mutation production coverage (MPC), TR contains for each
mutation operator and each production that operator can be applied to
the requirement to create a mutated string m from that production.

o If mutation results in invalid strings, the testing goal is simply to run
mutants.

o In this case, mutation operators define test requirements directly.

Slides and audiovisual material for private use only. Download or further distribution pro_

Example (mutation coverage)

Consider the Stream grammar from before.
o We introduce three (non-standard) mutation operators:
o 1: Change G to B; 2: change B to G; 3: replace digit by another digit
o Now consider the two ground strings G2509.01.90 and B52106.27.94

o Applying the mutation operators each on the two ground strings yields,
e.g., B2509.01.90, G2106.27.94, G2309.01.90, B1106.27.94 (all valid).
o TR: find test cases that kill the four mutants

@ Now assume the following 2 mutation operators: change “G" to “F",
change “B"” to “C"
o TR for MOC: apply the mutation operators to the ground strings above
o Tests (for MOC coverage): F2509.01.90 and €2106.27.94 (all invalid)

Sibylle Schupp Software Testing - Lecture 11 _

d audiovisual material for private use only. Download or further distribut

In-class exercise

_es and audiovisual material for private use only. Download or further distribution —
Mutation testing as gold standard

o Gold standard for comparing other test methods (see below for more)

o More effective, more expensive
o Number of tests depends on

o Size of the syntactic description
o Number of mutation operators

o Also applicable if there is no oracle available!
o Automation
o Hard (and expensive) to apply by hand

Slides and audiovisual material for private use only. Download or further distribution prohi_

Classification (grammar-based testing)

« Madel checking SR

*Valid strings

= Mutants are not tests
= Must kill mutants

testing
= XML and ethers
* lnvalid strings
* Ne ground strings

= Test how classes interact

=Valid strings

= Mutants are not tests.

» Must kil mutants * Input validation testing

* Includes OO * XML and cthers
=Valld strings

PrOduion i Botware Testing. aion 7 [Thi

Sibylle Schupp Software Testing - Lecture 11 _

Slides and audiovisual material for private use only. Download or further distribution pro_

Overview (valid and invalid tests)

Program-based Model-based Input space
9.21 9.4.1 9.5.1

Algebraic Input languages,
specifications including XML

Input space testing

9.5.2

Input languages,
including XML

Yes Yes [No |
Yes, must compile | Yes, must compile | Yes]
Yes Yes No
Includes OO Somatimes the
grammar is mutated

Voo I8 Sokwars Taling. s8on 2

Sibylle Schupp Software Testing - Lecture 11 _

nd audiovisual material for private use only. Download or further distributi
Outline

@ Grammars and mutation
@ Program-based coverage

0 Syntax-based testing |

_es and audiovisual material for private use only. Download or further distribution—

Program-based grammars

o Syntax-based testing originates in program testing.
o Mutation testing

o Commonly used for unit testing and integration testing
o BNF-based testing

o Used for testing language-based tools, e.g., compilers

Slides and audiovisual material for private use only. Download or further distribution pr_

Overview (program-based grammars)

= Mutants are not tests
= Must kill mutants

Compiler testing
Walid and invalid stri

* Input validation testing
= XML and others
=Valld string:

£ Amran & O

Sibylle Schupp Software Testing - Lecture 11 —

_es and audiovisual material for private use only. Download or further distribution —

Program-based grammars: mutations

o Ground string: the program under test
o Mutation operators modify the ground string, create mutant programs.

o Mutants must compile (valid strings).
o Mutants are not tests (test requirements), but are used to define TRs.

o Tests must “make a difference.” We refine the previous definition:

Given a mutant m for a ground string program P. A test t is said to kill m
iff the output of t on P is different from the output of t on m.

o Different mutation operators are defined for different programming
languages and different testing goals.

_es and audiovisual material for private use only. Download or further distribution —

Classes of mutants

From a testing purpose, not all mutants are desirable. One distinguishes:
o Dead mutant
o Killed by a test case
o Stillborn mutant
o Syntactically illegal
o Trivial mutant
o Killable by almost any test case
o Equivalent mutant
o Impossible to kill by any test (same behavior as original)

_ and audiovisual material for private use only. Download or further distributio_

Example (program-based mutation)

int Min (int A, int B)
{

int minVal;

minVal = A;

if (B<A) {

minVal = B;

}

return (minVal);
} // end Min

o What are reasonable mutations?

Slides and audiovisual material for private use only. Download or further distribution pr_

Example (mutants)

int Min (int A, int B)
{
int minVal;
// minVal = A; // original
minVal = B; // replace variable by another variable
// if (B < A) // original
if (B> A) // replace operator
if (B < minVal) // replace variable by another variable
{
minVal = B;
Bomb () ; // insert immediate runtime failure
minVal = A; // replace variable by another variable
minVal = failOnZero(B) // insert runtime failure
} // if B==0
return (minVal);
} // end Min

@ 6 mutants, each represents a separate program (6 diff. programs)

o “runtime failure”: only if program point reached

Sibylle Schupp

Software Testing - Lecture 11

_es and audiovisual material for private use only. Download or further distribution —
Strong and weak killing

Let M be a set of mutants.

o Given a mutant m € M that modifies a location / in a program P. A
test t is said to strongly kill m iff the output of t on P is different from
the output of t on m.

o Given a mutant m € M that modifies a location / in a program P. A
test t is said to weakly kill m iff the state of the execution of P on t is
different from the state of the execution of m on t immediately after /.

o RIP: Weakly killing satisfies reachability and infection, but not
propagation.

_es and audiovisual material for private use only. Download or further distribution —

Weak mutation

For weak mutation coverage (WMC), TR contains for each m € M exactly
one requirement, to weakly kill m.

o Easier in practice than strong mutation: less analysis

o In practice: most test sets that weakly kill all mutants also strongly kill
(many of) them. (Or so we hope.)

Slides and audiovisual material for private use only. Download or further distribution pr_

Example (weak mutation)

int Min (int A, int B) // the first mutant
{

int minVal;

// minVal = A;

minVal = B; // (%) replace variable by another variable

if (B<A)

{

minVal = B;

}

return (minVal);
} // end Min

o A weakly killing test: A=5, B=3
o State after (*) infected (different value for minVal)
o Conditions for RIP

o Reachability: line 2 always reachable
Infection: A # B (minVal has different value),
Propagation —(B < A) and A # B (Infection), thus B > A.

o For B < A, weak kills of this mutant do not also kill strongly

Sibylle Schupp Software Testing - Lecture 11 —

_es and audiovisual material for private use only. Download or further distribution —

Example (equivalent mutant)

int Min (int A, int B) // third mutant
{

int minVal;

minVal = A;

// if (B<A) // original

if (B < minVal) // (%) replace variable by another variable

{

minVal = B;

}

return (minVal);
} // end Min

o The mutant is equivalent
o Argument: by substitution

o No infection: state after (*) not infected;
in (B < minVal) both values B, minVal unchanged

_es and audiovisual material for private use only. Download or further distribution —

Example (strong versus weak mutation)

boolean isEven (int X)

if (X< 0) {
// X =0—X;, // original
X = 0; // replace variable by constant

}
if (double) (X/2) = ((double X)/ 2.0)
return true;
else
return false;
} // end isEven

o Consider test X = -6.
o RIP conditions?

o Reachability: X <0
o Infection X # 0. Test weakly kills mutant.
o Propagation: test does not strongly kill mutant.

o Condition for strong killing?

and audiovisual material for private use only. Download or further distribution—

In-class exercise

public static int findVal(int[] numbers, int val) { // pre: val>0

int findVal = —1;
// for (int i=1; i<numbers.length; i++) { // original
for (int i=0; i<numbers.length; i++4) { // mutant
if (numbers[i] = val) {
findVal = i;

}

return (findVal);

Slides and audiovisual material for private use only. Download or further distribution proki

Work flow

Run Generate RunT
equivalence test cases onP

detector /

Define Run mutants:

threshold Automated * schema-based

steps

* weak
» selective

l

Eliminate
ineffective
TCs

Irirodisction i Softwans Testing, edifion 2 (Gh &)

Sibylle Schupp Software Testing - Lecture 11

_nd audiovisual material for private use only. Download or further distributi—

References

o AO, 9.1, (9.2.2)

	Syntax-based testing I
	Grammars and mutation
	Program-based coverage

