_ and audiovisual material for private use only. Download or further distributio_

Software Testing

Sibylle Schupp?!

Lnstitute for Software Systems/Institut fiir Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 12

_nd audiovisual material for private use only. Download or further distributi—
Outline

0 Syntax-based testing Il

Slides and audiovisual material for private use only. Download or further distribution p_
Recap

o Mutation testing (mutation analysis): generate (valid or invalid) strings
from a grammar.

o Assume the mutant is a valid string. Mutation coverage (MC): for
each mutant, TR contains one requirement, to kill that mutant.

o Generation of mutants: based on mutation operators.

Sibylle Schupp Software Testing - Lecture 12 —

_es and audiovisual material for private use only. Download or further distribution —

Effective mutation operators

Let M be a set of mutation operators and O C M. If tests that are designed
to kill mutants created by O also kill (with a high chance) mutants created
by all remaining mutation operators, then O defines an effective set of
mutation operators.

o Effective in practice: insertion plus modification of unary/binary
operators
o Additional design considerations:
o Mutation operators should mimic typical programmer mistakes.
o At method level, mutation operators for different programming
languages are similar.

Slides and audiovisual material for private use only. Download or further distribution pro_
Mutation operators for Java (1/6)

o Absolute Value Insertion (ABS): Each arithmetic expression (and
subexpression) is modified by the functions abs (), negAbs(), and
failOnZero(). Ex.:

a=m=x* (o + p);

// 3 mutants (out of 5 % 3 = 15)
/) a = abs (mx (o+p))

// a=m x abs ((o + p));

// a = failOnZero (m x (o + p));

o Arithmetic Operator Replacement (AOR): Each occurrence of one of
the arithmetic operators (+,-,*,/,%) is replaced by each of the other
operators. In addition, each arithmetic operator is replaced by the
special mutation operators 1eft0Op and rightOp. Ex.:

a=m=x% (o + p);

// mutants (examples)
/) a=m+ (o+p);

// a=m— (o +p);

// a =m leftOp(o + p);

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pro_
Mutation operators for Java (2/6)

o Relational Operator Replacement (ROR): Each occurrence of one of
the relational operators (<, <=, >, >=, =, !=)is replaced by each
of the other operators and by the special operators falseOp and
trueOlp.

if (X<=Y)

// mutants (examples)
J/ if (X >Y)

J/ if (X <Y)

// if (X falseOp Y)

o Conditional Operator Replacement (COR): Each occurrence of one of
the logical operators &&, ||, &, |, ~ (with and without conditional
evaluation) is replaced by each of the other operators and the special
mutation operators falseOp, truelp, left0p, and rightOp. Ex.:

if (X<=Y &% a> 0)

// mutants (examples)

/) if (X<=Y || a>0)
/) if (X<=Y leftOp a > 0)

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pro_
Mutation operators for Java (3/6)

o Shift Operator Replacement (SOR): Each occurrence of one of the
shift operators (<<, >>, >>>) is replaced by each of the other
operators and by the special operator 1eft0p.

byte b = (byte) 16;

b =b>> 2;

// mutants (examples)
// b =b<< 2;

// b =0b leftOp 2;

o Logical Operator Replacement (LOR): Each occurrence of one of the
logical operators (bitwise and, bitwise or, exclusive or) is replaced by
each of the other operators. In addition, each logical operator is
replaced by the special mutation operators 1eft0Op and rightOp. Ex.:

int x = 60; int b = 13;
// mutants (examples)
// int ¢ =a | b;

// int ¢ = a rightOp b;

int c = a & b;

Sibylle Schupp

Software Testing - Lecture 12

Slides and audiovisual material for private use only. Download or further distribution p_

Mutation operators for Java (4/6)

o Assignment Operator Replacement (ASR): Each occurrence of one of
the assignment operators

, =, —=, x=, /=, %=’ &=, |=’ A=> <K=, >>=, >>>=
is replaced by each of the other operators.

a=m=x (o+p);

// mutants (examples)
// a+=mx (o +p);
// a—=mx (o +p);

o Unary Operator Insertion (UOI): Each unary operator (arithmetic +,

arithmetic -, conditional !, logical ~) is inserted in front of each
expression of the correct type.

a=m=x (o + p);
// mutants (examples)

/) a=mx —(o+0p);
// a=—mx (o+p))

Sibylle Schupp Software Testing - Lecture 12

Slides and audiovisual material for private use only. Download or further distribution p_
Mutation operators for Java (5/6)

@ Unary Operator Delete (UOD): Each unary operator (arithmetic +, -,
logical negation !, bitwise complement ~) is deleted.

if (I(X<=Y) && 1Z)

// UOD yields 2 mutants:
/) if (X<=Y) && 1Z)
/) if ((X<=Y) && Z)

o Scalar Variable Replacement (SVR): Each variable reference is
replaced by every other variable of the appropriate type that is declared
in the current scope.

a=m=% (o+ p);
// mutants (examples)

// o=m=x (o + p);
// a=o0 % (o+p);
// a=m#% (o + 0);
// p=m=x (o+p);

Sibylle Schupp Software Testing - Lecture 12 —

and audiovisual material for private use only. Download or further distribution—
Mutation operators for Java (6/6)

o Bomb Statement Replacement (BSR): Each statement is replaced by
a special Bomb () function.

a=m=x (o + p);
// mutant

// Bomb ()

Slides and audiovisual material for private use only. Download or further distribution pr_

Comparing coverage criteria

We modify the previous definition of subsumption.

o ldea: each coverage criterion defines test requirements. With each
requirement associate a mutant that will be killed only by tests that
satisfy the requirement.

o A coverage criterion is satisfied iff all mutants are killed that are
associated with the requirements for that criterion.

o The mutation operator(s) that ensure the coverage of a criterion yield(s)
the criterion.

o We say that mutation testing subsumes a criterion if there exist one or
more mutation operators that yield that criterion.

Sibylle Schupp Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution pro_

Graph coverage

o Assume weak mutation coverage.

o Def.: Given a program P, a test t, and a mutant m that modifies
location / in P. Then t weakly kills m if the state of the execution of P
is different from the state of the execution of m directly after /.

o Node coverage (statement coverage)

o The BSR (bomb statement replacement) operator yields node coverage.

o Insert a “bomb()" statement before each node. Killing each mutant
requires a set of a tests so that each statement is reached.

o Edge coverage (branch coverage)

o The ROR (relational operator replacement) operator yields edge

coverage.

o Example: “if (X <=Y)". For edge coverage, then-branch and
else-branch need to be taken. Associate:
o Mutant 1: “if (X falseOp Y)" (= if false)
o Mutant 2: “if (X trueOp Y)" (= if true)
o Kill mutant 1 with X, Y such that X <Y
kill mutant 2 with X, Y such that X > Y.

o Killing the mutants requires a test set with edge coverage.

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pr_

Graph coverage (cont'd)

o Why not use strong mutation coverage?

o Recall: The output of a test t on a program P is different from the
output of t on a mutant m.

o Problem: strong mutation too strict. Ex. (edge coverage):

int min(int A, int B) {

int minVal; // edge coverage &
minVal = A; // associated mutants as before:
if (B<A) { if (B falseOp A)

if (B trueOp A)
minVal = B;
}

return minVal;

o Consider the test set {(A=3,B=3), (A=4,B=3)}.
Clear: test set has edge coverage.

Sibylle Schupp Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution pro_
'
Graph coverage (cont'd)

int min(int A, int B) {

int minVal; // edge coverage &
minVal = A; // associated mutants as before:
if (B<A) { if (B falseOp A)
if (B trueOp A)
minVal = B;
}
return minVal;
}
o The test set {(3,3), (4,3)} does not strongly kill all associated mutants.
Mutant Output ‘ Test Output
if B falseOp A A A=4B=3 B 4 # 3, mutant killed
if BtrueOpA B A=4B=3 B B = B, mutant not killed

A=3,B=3 A A= B, mutant not killed
o For strong mutation coverage, ROR does not subsume edge coverage.

o Not surprising, though: strong mutation coverage formulates a global
property, while edge coverage is formulated per branch.

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pro_
Graph coverage (data-flow coverage)

o All-defs data-flow coverage (ADC)
o Recall the notation: Let n be a node, v be a variable € def(n).

o A DU path du(n,v) is a simple path from n to a use(n) that is def-clear
with respect to v.
o A def-path set is the set of all DU paths S = du(n, v) for n and v.

o Recall ADC: for each def-path set S = du(n, x), TR contains at least
one path.

o Assume strong killing. The statement deletion operator yields ADC
coverage.

o Let s be a definition statement of variable v. Let m be the mutant that
deletes s. Let t be a test that reaches s, thus weakly kills m (deleting a
definition implies infection). If ¢ also strongly kills m (propagation),
then:

@ Case 1: v is an output variable (“uses”). Then m killed implies that t is
a def-clear path from node s to the output.

@ Case 2: v is used at some later point without redefinition (and then
causes an incorrect output state). Again, t must be a def-clear path.

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pro_
Logic coverage

o Clause coverage

o Def.: Let ¢ be a clause. Then TR contains two requirements: ¢
evaluates to true and c evaluates to false.

o ROR, COR, LOR yield clause coverage.
0 Ex: x<y&& a>0.

mutant killing test ‘ state (orig) state (mutant)
false && a > 0 (true, true) true false
true && a >0 (false, true) false true
x <y && false (true, true) true false
x <y && true (true, false) false true

o For each mutated clause c, the killing test sets —c. But
ROR,COR,LOR replace each clause with both true and false.

@ Thus, mutation (with the operators above) subsumes clause coverage.

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pro_

Logic coverage (cont'd)

o General active clause coverage

o Recall: A major clause ¢; of a predicate p determines p if the minor
clauses ¢; of p, j # i, have values so that changing the truth value of ¢;
changes the truth value of p.

o GACC: For each major clause ¢ and predicate p choose minor clauses so
that ¢ determines p. TR contains two requirements: ¢ evaluates to true
and ¢ evaluates to false. The values for the minor clauses need not be
the same.

o Call p. the predicate for the test of major clause c. Associate the
mutant that replaces clause ¢ of p by “true”, p._trye, and the mutant

Pc=false-
o Then, the mutant p._trye is killed by a test that causes p. and p._trye
to have different values. But then, ¢ determines p.

o Similarly for p__¢,|ce-

o Thus, ROR, COR, LOR yield GACC.

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pr_

No subsumption

Some coverage criteria cannot be subsumed by any set of mutation
operators.

o Combinatorial criteria, because we assume that each mutation operator
is applied once (to each subexpression).

o RACC, CACC (restricted, correlated active clause coverage), because
they impose requirements on pairs of tests (of minor clauses)

Sibylle Schupp Software Testing - Lecture 12 —

_es and audiovisual material for private use only. Download or further distribution—
Historically first: mutation in FORTRAN

Source: A. J. Offutt and W. M. Craft, Using Compiler Optimization Techniques to Detect Equivalent Mutants, STVR 94

Mutation

Operator Description
AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement

DER DO statement end replacement
DSA DATA statement alterations
GLR GOTO label replacement

LCR logical connector replacement

ROR relational operator replacement

RSR RETURN statement replacement

SAN statement analysis

SAR scalar variable for array reference replacement
SCR scalar for constant replacement

SDL statement deletion

SRC source constant replacement

SVR scalar variable replacement

UOo1 unary operator insertion

Table 1: Mothra Mutation Operators for Fortran 77.

and audiovisual material for private use only. Download or further distributio_

Programming Languages

Source: Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing”, IEEE TSE 37 (5), 649-678 (covers 1970-2009)

Ada
2%

State Chart
3%

Network
Protocol

Fig. 6. Percentage of publications addressing each language to which
Mutation Testing has been applied

nd audiovisual material for private use only. Download or further distributi
Outline

@ Integration testing
@ Object-oriented mutation
0 Syntax-based testing Il @ Specification-based grammars

and audiovisual material for private use only. Download or further distribution—

Integration testing and object-oriented testing

o Testing integration of classes, packages, components
o Coupling

o Tests features unique to object-oriented languages
o Inheritance, dynamic binding, polymorphism

Slides and audiovisual material for private use only. Download or further distribution p_

Grammar-based testing: integration

* Mutants are not tests
= Must kill mutants:

» Compller testing

*Valld and invalid strings = Test how classes interact

= alid strings

= Mutants are not tests
= Must kil mutants

* Includes OO

* Input validation testing
+ XML and others
+Valld string

Iechucsion 1o Sobwars Tasting, sdiion 2 [Ghiif

Sibylle Schupp Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution pr_

Integration mutation

o Integration mutation focuses on mutating the connections between
components.

o Also called interface mutation
o Often mimics mismatch of assumptions between caller and callee.

o Caller assumes kilometers, callee returns miles.
o Callee assumes initialized variable, caller provides uninitialized.
o General: pre- and post-condition mismatch.

Sibylle Schupp Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution p_

Types of mutation operators

int f(...) {

ret = g(b,c);

o Change a calling method by modifying values that are sent to a called
method.
o Change a calling method by modifying the call.

o Change a called method by modifying values that enter and leave a
method.

o Parameters, class and package variables

o Change a called method by modifying return statements from the
method.

Sibylle Schupp Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution pro_

Integration mutation operators

IPVR | Integration Parameter Variable Replacement

Each parameter in a method call is replaced by each other variable
in the scope of the method call (of compatible type)

IUOI Integration Unary Operator Insertion

Each expression in a method call is modified by inserting all possible
unary operators in front and behind it

IPEX | Integration Parameter Exchange

Each parameter in a method call is exchanged with each parameter
of compatible types in that method call

IMCD | Integration Method Call Deletion

Each method call is deleted. If the method returns a value and
it is used in an expression, the method call is replaced with an
appropriate constant value

IREM | Integration Return Expression Modification

Each expression in each return statement in a method is modified
by applying the UOI and AOR operators

Sibylle Schupp Software Testing - Lecture 12 _

_es and audiovisual material for private use only. Download or further distribution —

Example (integration operators)

o Example IPVR (integration parameter variable replacement)

MyObject a, b;
callMethod (a);

// mutant

// callMethod (b);

Example IUOI (integration unary operator insertion)

©

callMethod (a);

// mutant

// callMethod (a++);
// callMethod (++a);
// callMethod (a—);

Example IPEX (integration parameter exchange)

©

Max(a,b)
// mutant
// Max(b,a)

_es and audiovisual material for private use only. Download or further distribution—

Example (integration operators)

o Example IMCP (integration method call deletion)

X = Max(a,b)
// mutant
// X = new Integer (0);

(+]

Example IREM (integration return expression modification)

int callMethod () {
return a + b;

// mutant

// return 4+a + b;

// return a — b;

nd audiovisual material for private use only. Download or further distributi
Outline

@ Integration testing
@ Object-oriented mutation
0 Syntax-based testing Il @ Specification-based grammars

_es and audiovisual material for private use only. Download or further distribution —

Object-oriented mutation

o Object-based features
o Information hiding, encapsulation (protecting design from parts of the
implementation)
o Access control (e.g., Java: private, protected, public, package)
o Overloading
o Object-oriented features
o Inheritance, dynamic binding, polymorphism

_es and audiovisual material for private use only. Download or further distribution —

In-class exercise

class A {
public void Foo() { System.out.println("A::Foo()"); }

class B extends A {
public void Foo() { System.out.println("B::Foo()"); }

class Test {
public static void main(String[] args)

{
A a;
B b;
a = new A();
b = new B();
a.Foo(); // output —> "A::Foo()"
b.Foo(); // output —> "B::Foo()"
a = new B();
a.Foo(); // output —> 77
}

Slides and audiovisual material for private use only. Download or further distribution pr_
OO features

o Method overriding
o A child class declares an object or method with a name that is already
declared in an ancestor class
o vs. overloading: different constructors or methods in the same class have
the same name.
o Variable hiding
o A variable in a child class has the same name and type of an inherited
variable

o Class constructors
o Polymorphism
o Polymorphic attribute: An object reference that can take on various
types.

o Polymorphic method: A method that can accept parameters of different
types because it has a parameter that is declared of type superclass.

Sibylle Schupp Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution p_
Mutation operators in MulJava

Language Feature | Operator Description
Encapsulation AMC Access modifier change
IHD Hiding variable deletion
THI Hiding variable insertion
10D Overriding method deletion
I0P Overriding method calling position change
Inheritance IOR Overriding method rename
IS8T super keyword insertion
ISD super keyword deletion
IPC Explicit call to a parent’s constructor deletion

PNC new method call with child class type
PMD Member variable declaration with parent class type

PPD Parameter variable declaration with child class type
PCI Type cast operator insertion
Polymorphism PCC Cast type change
PCD Type cast operator deletion
PRV Reference assignment with other comparable variable

OMR Overloading method contents replace
OMD Overloading method deletion
OAC Arguments of overloading method call change

JTI this keyword insertion

JTD this keyword deletion

JSI static modifier insertion

JSD static modifier deletion

Java-Specific JID Member variable initialization deletion
Features JDC Java-supported default constructor deletion

EOA Reference assignment and content assignment replacement
EOC Reference comparison and content comparison replacement

EAM Acessor method change
EMM Modifier method change

Sibylle Schupp Software Testing - Lecture 12 —

nd audiovisual material for private use only. Download or further distributi
Outline

@ Integration testing
@ Object-oriented mutation
0 Syntax-based testing Il @ Specification-based grammars

_es and audiovisual material for private use only. Download or further distribution —

Model-based grammars

Model-based grammars include specification-based grammars as well as
design notations.
o Formal specification languages
o OCL, SMV, Z, ...
o Informal specification languages
o Design notations
o Statecharts, FSMs, UML

Slides and audiovisual material for private use only. Download or further distribution p_

Grammar-based testing: model-based testing

mmar-Based Testing

Program-based

* Program mutation

*Valid strings

* Mutants are not tests
* Must kill mutants

* Compiler testing

Sibylle Schupp

oftware Testing, edith

I
Model-Based Input-Based

* FSMs

* Model checking
*Valid strings
«Traces are tests

* Input validation
testing

* XML and others

* Invalid strings

* No ground strings

* Mutants are tests

* Test how classes interact
*Valid strings

* Mutants are not tests SALE :
* Input validation testing

* Must kill mutants SXM o othors

* Includes OO «Valid strings

Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution pr_
Model checking

o Verification method (software, hardware)
o Sound
o Automated

o Models are (finite) state machine.

o What is checked?

o Input: a model M and a property ¢ (logic formula)
o Task: does M have property ¢ (“satisfy formula ¢")?
o Output: yes, otherwise counterexample

o Model checking algorithms
o (Exhaustive) searches through the state space of the model.

Sibylle Schupp Software Testing - Lecture 12 —

and audiovisual material for private use only. Download or further distribution—
Example (NuSMV)

MODULE main
VAR
x : boolean;
y : boolean;
ASSIGN
init (x) := FALSE;
init (y) := FALSE;
next (x) := case
Ix & y : TRUE;
ly : TRUE;
X . FALSE;
TRUE DX
esac;
next (y) := case
x & ly : FALSE;
x &y :vy;
Ix & y : FALSE;
TRUE : TRUE;
esac;

Slides and audiovisual material for private use only. Download or further distribution pro_
NuSMV

http://nusmv.fbk.eu

@ SMV is the name of a specification language and of a model checker.

@ NuSMV is an open-source implementation of SMV.
@ A NuSMV model defines states and transitions.

o States are introduced through variable declarations.

o The state space is the Cartesian product of the value ranges of all
variables.

o Initial states can be explicitly defined, by restricting values of variables.

o Transitions are defined by “next” commands.

@ NuSMV either simulates the model or verifies its properties.

o In simulation mode, it produces “traces” (paths) through the state space.
o In verification mode, it searches through the state space. If a property is
not verified, it returns a counter example in form of a trace.

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution p_

Simulation in NuSMV

NuSMV > simulate —i —a —k 6

K ok ok ok K ok K
K oK ok ok K K ok ok ok K K K ok ok

Simulation Starting From State 1.1
AVAILABLE STATES

* ok ok K K ok K
K oKk koK K ok ok K Kk

State

x = TRUE
y = TRUE

Press

Return to Proceed.

% %k ok >k ok ok %k ok k *k k k k

% %k %k %k 5k k %k 5k %k %k %k k k

% %k 3k >k 5k %k %k 5k %k %k ok k k

There's only one available state.
Chosen state is: 0
sxxkkkxkkkxxkkx AVAILABLE STATES
State
0)
x = FALSE
y = TRUE
sxxkkkxkkkxxxkx AVAILABLE STATES
State
0)
x = TRUE
y = FALSE
sxxkkkxkkkxxxk*x AVAILABLE STATES
State
x = TRUE
y = FALSE

Sibylle Schupp

Software Testing - Lecture 12

Slides and audiovisual material for private use only. Download or further distribution pr_
Using model checking for FSM mutation testing

o As before:

o Express a FSM as a model (in the sense of a model checker).
o Devise appropriate mutation operators: Constant replacement operator,
LOR, ...
o Generate a set of mutants of the FSM by using mutation operators
o Find for each mutant a test that kills it
o New:
o Find a test for killing the mutant through model checking.

o What is a killing test? A trace that is possible in the original FSM, but
not in the mutated FSM.

Sibylle Schupp Software Testing - Lecture 12 —

Slides and audiovisual material for private use only. Download or further distribution pro_

Mutations and test cases

o Consider the constant replacement operator
o Changes a constant to another constant
o Ex.: case "next(y)"
o original: 'x&y : false
o mutant: !x&y : true
o Killing mutants
o Need a sequence of states (“trace”) that is allowed in the original
machine, but not in the mutant.
o If mutation would not change the original FSM, the model checker could
prove the behavior it specifies. Formulate mutation as “property.”
o Ex.: “whenever Ix&y, then y true in the next transition”
o Ask the model checker to verify the mutation-motivated property for the
original FSM. Two possible outcomes:
o A counterexample (a path that violates the property) = killing test
o No counterexample. Then the mutant is equivalent.

Sibylle Schupp Software Testing - Lecture 12 _

Slides and audiovisual material for private use only. Download or further distribution pro_
Counterexamples

o Mutation:

|_FSM version|
-&—@®@

@&

o Counterexample: test case (path) FF-TT-FT-TF kills the mutant.
o If no sequence is produced, mutant is equivalent
o Detection of equivalent mutants decidable for FSMs ()

o Technically: formulate mutation in a logic language, here the temporal
logic CTL:

o Ex.: AG(('x&y)— > AXy = TRUE)
“whenever !x&y, then y true in the next transition”

Sibylle Schupp Software Testing - Lecture 12 _

and audiovisual material for private use only. Download or further distribution—
Mutant (NuSMV)

MODULE main
VAR
x : boolean;
y : boolean;
ASSIGN
init (x) := FALSE;
init (y) := FALSE;
next (x) := case
Ix & y : TRUE;
ly : TRUE;
X . FALSE;
TRUE TOX;
esac;
next (y) := case
x & ly : FALSE;
x &y :y;
Ix & y : FALSE; — to mutate: x & !y : TRUE
TRUE : TRUE;
esac;
AG ((!'x & y) — AX (y = TRUE)) — mutation

_es and audiovisual material for private use only. Download or further distribution —
Using NuSMV for FSM testing

NuSMV > go
NuSMV > check_property
— specification AG ((!x & y) — AX y = TRUE) is false
— as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

—> State: 1.1 <—

x = FALSE
y = FALSE

—> State: 1.2 <—
x = TRUE
y = TRUE

—> State: 1.3 <—
x = FALSE

—> State: 1.4 <—
x = TRUE
y = FALSE

NuSMV >

Slides and audiovisual material for private use only. Download or further distribution pr_

Summary (model-based grammars)

o Model checking: growing importance
o FSMs can be encoded in model checkers

o Mutation expressed as property that should hold in the original FSM
o Model checking is used to find paths (traces) that violate the property

o Using model checkers for mutation-based testing of FSMS, equivalent
mutants can be detected automatically.

Sibylle Schupp Software Testing - Lecture 12 —

and audiovisual material for private use only. Download or further distribution—

References

o AO, 9.22,93,94

o Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing”, IEEE Transactions on Software Engineering 37 (5),
649-678

	Syntax-based testing II
	Integration testing
	Object-oriented mutation
	Specification-based grammars

