
Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Software Testing

Sibylle Schupp1

1Institute for Software Systems/Institut für Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 12

Sibylle Schupp Software Testing - Lecture 12 2022 1

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Syntax-based testing II

Sibylle Schupp Software Testing - Lecture 12 2022 2

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Recap

Mutation testing (mutation analysis): generate (valid or invalid) strings
from a grammar.
Assume the mutant is a valid string. Mutation coverage (MC): for
each mutant, TR contains one requirement, to kill that mutant.
Generation of mutants: based on mutation operators.

Sibylle Schupp Software Testing - Lecture 12 2022 3

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Effective mutation operators

Definition
Let M be a set of mutation operators and O ⊂ M. If tests that are designed
to kill mutants created by O also kill (with a high chance) mutants created
by all remaining mutation operators, then O defines an effective set of
mutation operators.

Effective in practice: insertion plus modification of unary/binary
operators
Additional design considerations:

Mutation operators should mimic typical programmer mistakes.
At method level, mutation operators for different programming
languages are similar.

Sibylle Schupp Software Testing - Lecture 12 2022 4

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation operators for Java (1/6)
Absolute Value Insertion (ABS): Each arithmetic expression (and
subexpression) is modified by the functions abs(), negAbs(), and
failOnZero(). Ex.:

a = m ∗ (o + p) ;
// 3 mutants (out o f 5 ∗ 3 = 15)
// a = abs (m ∗ (o + p)) ;
// a = m ∗ abs ((o + p)) ;
// a = f a i l O n Z e r o (m ∗ (o + p)) ;

Arithmetic Operator Replacement (AOR): Each occurrence of one of
the arithmetic operators (+,-,*,/,%) is replaced by each of the other
operators. In addition, each arithmetic operator is replaced by the
special mutation operators leftOp and rightOp. Ex.:

a = m ∗ (o + p) ;
// mutants (examples)
// a = m + (o + p) ;
// a = m − (o + p) ;
// a = m l e f t O p (o + p) ;

Sibylle Schupp Software Testing - Lecture 12 2022 5

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation operators for Java (2/6)
Relational Operator Replacement (ROR): Each occurrence of one of
the relational operators (<, <=, >, >=, =, !=) is replaced by each
of the other operators and by the special operators falseOp and
trueOp.

i f (X <= Y)
// mutants (examples)
// i f (X > Y)
// i f (X < Y)
// i f (X f a l s e O p Y)

Conditional Operator Replacement (COR): Each occurrence of one of
the logical operators &&, ||, &, |, ^ (with and without conditional
evaluation) is replaced by each of the other operators and the special
mutation operators falseOp, trueOp, leftOp, and rightOp. Ex.:

i f (X <= Y && a > 0)
// mutants (examples)
// i f (X <= Y | | a > 0)
// i f (X <= Y l e f t O p a > 0)

Sibylle Schupp Software Testing - Lecture 12 2022 6

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation operators for Java (3/6)
Shift Operator Replacement (SOR): Each occurrence of one of the
shift operators (<<, >>, >>>) is replaced by each of the other
operators and by the special operator leftOp.

byte b = (byte) 16 ;
b = b >> 2 ;
// mutants (examples)
// b = b << 2 ;
// b = b l e f t O p 2 ;

Logical Operator Replacement (LOR): Each occurrence of one of the
logical operators (bitwise and, bitwise or, exclusive or) is replaced by
each of the other operators. In addition, each logical operator is
replaced by the special mutation operators leftOp and rightOp. Ex.:

i n t x = 60 ; i n t b = 13 ; i n t c = a & b ;
// mutants (examples)
// i n t c = a | b ;
// i n t c = a r ightOp b ;

Sibylle Schupp Software Testing - Lecture 12 2022 7

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation operators for Java (4/6)
Assignment Operator Replacement (ASR): Each occurrence of one of
the assignment operators

=, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, >>>=
is replaced by each of the other operators.

a = m ∗ (o + p) ;
// mutants (examples)
// a += m ∗ (o + p) ;
// a −= m ∗ (o + p) ;

Unary Operator Insertion (UOI): Each unary operator (arithmetic +,
arithmetic -, conditional !, logical ~) is inserted in front of each
expression of the correct type.

a = m ∗ (o + p) ;
// mutants (examples)
// a = m ∗ −(o + p) ;
// a = −(m ∗ (o + p)) ;

Sibylle Schupp Software Testing - Lecture 12 2022 8

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation operators for Java (5/6)

Unary Operator Delete (UOD): Each unary operator (arithmetic +, -,
logical negation !, bitwise complement ~) is deleted.

i f (! (X <= Y) && ! Z)
// UOD y i e l d s 2 mutants :
// i f (X <= Y) && ! Z)
// i f (! (X <= Y) && Z)

Scalar Variable Replacement (SVR): Each variable reference is
replaced by every other variable of the appropriate type that is declared
in the current scope.

a = m ∗ (o + p) ;
// mutants (examples)
// o = m ∗ (o + p) ;
// a = o ∗ (o + p) ;
// a = m ∗ (o + o) ;
// p = m ∗ (o + p) ;

Sibylle Schupp Software Testing - Lecture 12 2022 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation operators for Java (6/6)

Bomb Statement Replacement (BSR): Each statement is replaced by
a special Bomb() function.

a = m ∗ (o + p) ;
// mutant
// Bomb()

Sibylle Schupp Software Testing - Lecture 12 2022 10

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Comparing coverage criteria

We modify the previous definition of subsumption.
Idea: each coverage criterion defines test requirements. With each
requirement associate a mutant that will be killed only by tests that
satisfy the requirement.

A coverage criterion is satisfied iff all mutants are killed that are
associated with the requirements for that criterion.
The mutation operator(s) that ensure the coverage of a criterion yield(s)
the criterion.

We say that mutation testing subsumes a criterion if there exist one or
more mutation operators that yield that criterion.

Sibylle Schupp Software Testing - Lecture 12 2022 11

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Graph coverage
Assume weak mutation coverage.

Def.: Given a program P, a test t, and a mutant m that modifies
location l in P. Then t weakly kills m if the state of the execution of P
is different from the state of the execution of m directly after l .

Node coverage (statement coverage)
The BSR (bomb statement replacement) operator yields node coverage.
Insert a “bomb()” statement before each node. Killing each mutant
requires a set of a tests so that each statement is reached.

Edge coverage (branch coverage)
The ROR (relational operator replacement) operator yields edge
coverage.
Example: “if (X <= Y)”. For edge coverage, then-branch and
else-branch need to be taken. Associate:

Mutant 1: “if (X falseOp Y)” (= if false)
Mutant 2: “if (X trueOp Y)” (= if true)

Kill mutant 1 with X , Y such that X ≤ Y ;
kill mutant 2 with X , Y such that X > Y .

Killing the mutants requires a test set with edge coverage.
Sibylle Schupp Software Testing - Lecture 12 2022 12

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Graph coverage (cont’d)

Why not use strong mutation coverage?
Recall: The output of a test t on a program P is different from the
output of t on a mutant m.

Problem: strong mutation too strict. Ex. (edge coverage):
i n t min (i n t A, i n t B) {

i n t minVal ; // edge cove rage &
minVal = A; // a s s o c i a t e d mutants as b e f o r e :
i f (B<A) { i f (B f a l s e O p A)

i f (B trueOp A)
minVal = B;

}
r e t u r n minVal ;

}

Consider the test set {(A=3,B=3), (A=4,B=3)}.
Clear: test set has edge coverage.

Sibylle Schupp Software Testing - Lecture 12 2022 13

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Graph coverage (cont’d)
i n t min (i n t A, i n t B) {

i n t minVal ; // edge cove rage &
minVal = A; // a s s o c i a t e d mutants as b e f o r e :
i f (B<A) { i f (B f a l s e O p A)

i f (B trueOp A)
minVal = B;

}
r e t u r n minVal ;

}

The test set {(3,3), (4,3)} does not strongly kill all associated mutants.
Mutant Output Test Output
if B falseOp A A A=4,B=3 B 4 ̸= 3, mutant killed
if B trueOp A B A=4,B=3 B B = B, mutant not killed

A=3,B=3 A A = B, mutant not killed
For strong mutation coverage, ROR does not subsume edge coverage.
Not surprising, though: strong mutation coverage formulates a global
property, while edge coverage is formulated per branch.

Sibylle Schupp Software Testing - Lecture 12 2022 14

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Graph coverage (data-flow coverage)
All-defs data-flow coverage (ADC)

Recall the notation: Let n be a node, v be a variable ∈ def(n).
A DU path du(n, v) is a simple path from n to a use(n) that is def-clear
with respect to v .
A def-path set is the set of all DU paths S = du(n, v) for n and v .

Recall ADC: for each def-path set S = du(n, x), TR contains at least
one path.

Assume strong killing. The statement deletion operator yields ADC
coverage.

Let s be a definition statement of variable v . Let m be the mutant that
deletes s. Let t be a test that reaches s, thus weakly kills m (deleting a
definition implies infection). If t also strongly kills m (propagation),
then:

1 Case 1: v is an output variable (“uses”). Then m killed implies that t is
a def-clear path from node s to the output.

2 Case 2: v is used at some later point without redefinition (and then
causes an incorrect output state). Again, t must be a def-clear path.

Sibylle Schupp Software Testing - Lecture 12 2022 15

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Logic coverage
Clause coverage

Def.: Let c be a clause. Then TR contains two requirements: c
evaluates to true and c evaluates to false.

ROR, COR, LOR yield clause coverage.
Ex.: x ≤ y && a ≥ 0.

mutant killing test state (orig) state (mutant)
false && a ≥ 0 (true, true) true false
true && a ≥ 0 (false, true) false true
x ≤ y && false (true, true) true false
x ≤ y && true (true, false) false true

For each mutated clause c, the killing test sets ¬c. But
ROR,COR,LOR replace each clause with both true and false.
Thus, mutation (with the operators above) subsumes clause coverage.

Sibylle Schupp Software Testing - Lecture 12 2022 16

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Logic coverage (cont’d)

General active clause coverage
Recall: A major clause ci of a predicate p determines p if the minor
clauses cj of p, j ̸= i , have values so that changing the truth value of ci
changes the truth value of p.
GACC: For each major clause c and predicate p choose minor clauses so
that c determines p. TR contains two requirements: c evaluates to true
and c evaluates to false. The values for the minor clauses need not be
the same.

Call pc the predicate for the test of major clause c. Associate the
mutant that replaces clause c of p by “true”, pc=true, and the mutant
pc=false.

Then, the mutant pc=true is killed by a test that causes pc and pc=true
to have different values. But then, c determines p.
Similarly for pc=false.

Thus, ROR, COR, LOR yield GACC.

Sibylle Schupp Software Testing - Lecture 12 2022 17

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

No subsumption

Some coverage criteria cannot be subsumed by any set of mutation
operators.

Combinatorial criteria, because we assume that each mutation operator
is applied once (to each subexpression).
RACC, CACC (restricted, correlated active clause coverage), because
they impose requirements on pairs of tests (of minor clauses)

Sibylle Schupp Software Testing - Lecture 12 2022 18

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Historically first: mutation in FORTRAN
Source: A. J. Offutt and W. M. Craft, Using Compiler Optimization Techniques to Detect Equivalent Mutants, STVR 94

Sibylle Schupp Software Testing - Lecture 12 2022 19

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Programming Languages
Source: Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing”, IEEE TSE 37 (5), 649-678 (covers 1970–2009)

Sibylle Schupp Software Testing - Lecture 12 2022 20

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Syntax-based testing II

Integration testing
Object-oriented mutation
Specification-based grammars

Sibylle Schupp Software Testing - Lecture 12 2022 21

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Integration testing and object-oriented testing

Testing integration of classes, packages, components
Coupling

Tests features unique to object-oriented languages
Inheritance, dynamic binding, polymorphism

Sibylle Schupp Software Testing - Lecture 12 2022 22

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Grammar-based testing: integration

Sibylle Schupp Software Testing - Lecture 12 2022 23

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Integration mutation

Integration mutation focuses on mutating the connections between
components.

Also called interface mutation
Often mimics mismatch of assumptions between caller and callee.

Caller assumes kilometers, callee returns miles.
Callee assumes initialized variable, caller provides uninitialized.
General: pre- and post-condition mismatch.

Sibylle Schupp Software Testing - Lecture 12 2022 24

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Types of mutation operators

i n t f (. . .) {
. . .
r e t = g (b , c) ;
. .

}

Change a calling method by modifying values that are sent to a called
method.
Change a calling method by modifying the call.
Change a called method by modifying values that enter and leave a
method.

Parameters, class and package variables
Change a called method by modifying return statements from the
method.

Sibylle Schupp Software Testing - Lecture 12 2022 25

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Integration mutation operators

IPVR Integration Parameter Variable Replacement
Each parameter in a method call is replaced by each other variable
in the scope of the method call (of compatible type)

IUOI Integration Unary Operator Insertion
Each expression in a method call is modified by inserting all possible
unary operators in front and behind it

IPEX Integration Parameter Exchange
Each parameter in a method call is exchanged with each parameter
of compatible types in that method call

IMCD Integration Method Call Deletion
Each method call is deleted. If the method returns a value and
it is used in an expression, the method call is replaced with an
appropriate constant value

IREM Integration Return Expression Modification
Each expression in each return statement in a method is modified
by applying the UOI and AOR operators

Sibylle Schupp Software Testing - Lecture 12 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (integration operators)
Example IPVR (integration parameter variable replacement)

MyObject a , b ;
ca l lMethod (a) ;
// mutant
// ca l lMethod (b) ;

Example IUOI (integration unary operator insertion)
ca l lMethod (a) ;
// mutant
// ca l lMethod (a++) ;
// ca l lMethod (++a) ;
// ca l lMethod (a−−) ;

Example IPEX (integration parameter exchange)
Max(a , b)
// mutant
// Max(b , a)

Sibylle Schupp Software Testing - Lecture 12 2022 27

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (integration operators)

Example IMCP (integration method call deletion)
X = Max(a , b)
// mutant
// X = new I n t e g e r (0) ;

Example IREM (integration return expression modification)
i n t ca l lMethod () {

r e t u r n a + b ;
// mutant
// r e t u r n ++a + b ;
// r e t u r n a − b ;

Sibylle Schupp Software Testing - Lecture 12 2022 28

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Syntax-based testing II

Integration testing
Object-oriented mutation
Specification-based grammars

Sibylle Schupp Software Testing - Lecture 12 2022 29

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Object-oriented mutation

Object-based features
Information hiding, encapsulation (protecting design from parts of the
implementation)
Access control (e.g., Java: private, protected, public, package)
Overloading

Object-oriented features
Inheritance, dynamic binding, polymorphism

Sibylle Schupp Software Testing - Lecture 12 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise
c l a s s A {

p u b l i c vo id Foo () { System . out . p r i n t l n ("A : : Foo () ") ; }

}
c l a s s B extends A {

p u b l i c vo id Foo () { System . out . p r i n t l n ("B : : Foo () ") ; }
}
c l a s s Test {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s)
{

A a ;
B b ;
a = new A() ;
b = new B() ;
a . Foo () ; // output −−> "A : : Foo () "
b . Foo () ; // output −−> "B : : Foo () "

a = new B() ;
a . Foo () ; // output −−> ??

}
}

Sibylle Schupp Software Testing - Lecture 12 2022 31

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

OO features

Method overriding
A child class declares an object or method with a name that is already
declared in an ancestor class
vs. overloading: different constructors or methods in the same class have
the same name.

Variable hiding
A variable in a child class has the same name and type of an inherited
variable

Class constructors
Polymorphism

Polymorphic attribute: An object reference that can take on various
types.
Polymorphic method: A method that can accept parameters of different
types because it has a parameter that is declared of type superclass.

Sibylle Schupp Software Testing - Lecture 12 2022 32

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation operators in MuJava

Sibylle Schupp Software Testing - Lecture 12 2022 33

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Syntax-based testing II

Integration testing
Object-oriented mutation
Specification-based grammars

Sibylle Schupp Software Testing - Lecture 12 2022 34

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Model-based grammars

Model-based grammars include specification-based grammars as well as
design notations.

Formal specification languages
OCL, SMV, Z, . . .

Informal specification languages
Design notations

Statecharts, FSMs, UML

Sibylle Schupp Software Testing - Lecture 12 2022 35

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Grammar-based testing: model-based testing

Sibylle Schupp Software Testing - Lecture 12 2022 36

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Model checking

Verification method (software, hardware)
Sound
Automated

Models are (finite) state machine.
What is checked?

Input: a model M and a property ϕ (logic formula)
Task: does M have property ϕ (“satisfy formula ϕ”)?
Output: yes, otherwise counterexample

Model checking algorithms
(Exhaustive) searches through the state space of the model.

Sibylle Schupp Software Testing - Lecture 12 2022 37

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (NuSMV)
MODULE main

VAR
x : boolean ;
y : boolean ;

ASSIGN
i n i t (x) := FALSE ;
i n i t (y) := FALSE ;

nex t (x) := case
! x & y : TRUE;
! y : TRUE;
x : FALSE ;
TRUE : x ;

e sac ;

nex t (y) := case
x & ! y : FALSE ;
x & y : y ;
! x & y : FALSE ;
TRUE : TRUE;

e sac ;

Sibylle Schupp Software Testing - Lecture 12 2022 38

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

NuSMV
http://nusmv.fbk.eu

1 SMV is the name of a specification language and of a model checker.
2 NuSMV is an open-source implementation of SMV.
3 A NuSMV model defines states and transitions.

States are introduced through variable declarations.
The state space is the Cartesian product of the value ranges of all
variables.
Initial states can be explicitly defined, by restricting values of variables.
Transitions are defined by “next” commands.

4 NuSMV either simulates the model or verifies its properties.
In simulation mode, it produces “traces” (paths) through the state space.
In verification mode, it searches through the state space. If a property is
not verified, it returns a counter example in form of a trace.

Sibylle Schupp Software Testing - Lecture 12 2022 39

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Simulation in NuSMV
NuSMV > s i m u l a t e −i −a −k 6

∗∗∗∗∗∗∗∗ S i m u l a t i o n S t a r t i n g From S t a t e 1 . 1 ∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ AVAILABLE STATES ∗∗∗∗∗∗∗∗∗∗∗∗∗

================= S t a t e =================
x = TRUE
y = TRUE

There ' s o n l y one a v a i l a b l e s t a t e . P r e s s Return to Proceed .
Chosen s t a t e i s : 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ AVAILABLE STATES ∗∗∗∗∗∗∗∗∗∗∗∗∗

================= S t a t e =================
0) −−−−−−−−−−−−−−−−−−−−−−−−−
x = FALSE
y = TRUE

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ AVAILABLE STATES ∗∗∗∗∗∗∗∗∗∗∗∗∗
================= S t a t e =================
0) −−−−−−−−−−−−−−−−−−−−−−−−−
x = TRUE
y = FALSE

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ AVAILABLE STATES ∗∗∗∗∗∗∗∗∗∗∗∗∗
================= S t a t e =================
x = TRUE
y = FALSE

Sibylle Schupp Software Testing - Lecture 12 2022 40

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Using model checking for FSM mutation testing

As before:
Express a FSM as a model (in the sense of a model checker).
Devise appropriate mutation operators: Constant replacement operator,
LOR, . . .
Generate a set of mutants of the FSM by using mutation operators
Find for each mutant a test that kills it

New:
Find a test for killing the mutant through model checking.

What is a killing test? A trace that is possible in the original FSM, but
not in the mutated FSM.

Sibylle Schupp Software Testing - Lecture 12 2022 41

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutations and test cases

Consider the constant replacement operator
Changes a constant to another constant
Ex.: case “next(y)”

original: !x&y : false
mutant: !x&y : true

Killing mutants
Need a sequence of states (“trace”) that is allowed in the original
machine, but not in the mutant.
If mutation would not change the original FSM, the model checker could
prove the behavior it specifies. Formulate mutation as “property.”

Ex.: “whenever !x&y , then y true in the next transition”
Ask the model checker to verify the mutation-motivated property for the
original FSM. Two possible outcomes:

A counterexample (a path that violates the property) = killing test
No counterexample. Then the mutant is equivalent.

Sibylle Schupp Software Testing - Lecture 12 2022 42

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Counterexamples

Mutation:

Counterexample: test case (path) FF-TT-FT-TF kills the mutant.
If no sequence is produced, mutant is equivalent

Detection of equivalent mutants decidable for FSMs (!)
Technically: formulate mutation in a logic language, here the temporal
logic CTL:

Ex.: AG((!x&y)− > AXy = TRUE)
“whenever !x&y , then y true in the next transition”

Sibylle Schupp Software Testing - Lecture 12 2022 43

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutant (NuSMV)
MODULE main
VAR

x : boolean ;
y : boolean ;

ASSIGN
i n i t (x) := FALSE ;
i n i t (y) := FALSE ;

nex t (x) := case
! x & y : TRUE;
! y : TRUE;
x : FALSE ;
TRUE : x ;

e sac ;

nex t (y) := case
x & ! y : FALSE ;
x & y : y ;
! x & y : FALSE ; −− to mutate : x & ! y : TRUE
TRUE : TRUE;

e sac ;
AG ((! x & y) −> AX (y = TRUE)) −− mutat ion

Sibylle Schupp Software Testing - Lecture 12 2022 44

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Using NuSMV for FSM testing

NuSMV > go
NuSMV > check_prope r t y
−− s p e c i f i c a t i o n AG ((! x & y) −> AX y = TRUE) i s f a l s e
−− as demonst ra ted by the f o l l o w i n g e x e c u t i o n sequence
Trace D e s c r i p t i o n : CTL Counterexample
Trace Type : Counterexample

−> S t a t e : 1 . 1 <−
x = FALSE
y = FALSE

−> S t a t e : 1 . 2 <−
x = TRUE
y = TRUE

−> S t a t e : 1 . 3 <−
x = FALSE

−> S t a t e : 1 . 4 <−
x = TRUE
y = FALSE

NuSMV >

Sibylle Schupp Software Testing - Lecture 12 2022 45

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Summary (model-based grammars)

Model checking: growing importance
FSMs can be encoded in model checkers

Mutation expressed as property that should hold in the original FSM
Model checking is used to find paths (traces) that violate the property

Using model checkers for mutation-based testing of FSMS, equivalent
mutants can be detected automatically.

Sibylle Schupp Software Testing - Lecture 12 2022 46

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

References

AO, 9.2.2, 9.3, 9.4
Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing”, IEEE Transactions on Software Engineering 37 (5),
649-678

Sibylle Schupp Software Testing - Lecture 12 2022 47

	Syntax-based testing II
	Integration testing
	Object-oriented mutation
	Specification-based grammars

